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According to Hermann [Z. Kristallogr. (1929), 69, 533] the crystal lographic space groups G have two kinds 
of maximal subgroups H, isotranslational ('zellengleich') and isoclass ('klassengleich'), i.e. subgroups of 
the same class but with different translation lattices. The maximal subgroups of index two are easily 
found from the existing tabulations of magnetic space groups. The paper focuses mainly on isoclass 
subgroups with increased unit cells. Also, a method is described for deriving directly from the crystal- 
lographic space groups all maximal isoclass subgroups of index two and of index four with increased 
unit cells. 

Introduction 

Hermann (1929) was first to distinguish between two 
categories of maximal subgroups H of space groups G: 
(a) subgroups H having the same translation lattice as 
G ('zellengleich'), (b) subgroups H having a different 
translation lattice, but belonging to the same crystal 
class as G ('klassengleich'). 

Subgroups of category (a) were first presented by 
Hermann in lnternationale Tabellen zur Bestimmung 
yon Kristallstrukturen (1935), so many crystallographers 
will be familiar with them. Subgroups of category (b) 
look more mysterious. It might even be surprising to 
learn from this paper that maximal subgroups of cat- 
egory (b) were first tabulated nearly 20 years ago al- 
though in a form in which the fact is difficult to rec- 
ognize. Indeed, we shall show in Part I that, with little 
calculation, maximal subgroups of category (b) can be 
read directly from the known tabulation of magnetic 
space groups having an antitranslation element (Ope- 
chowski & Guccione, 1965; Belov, Neronova & Smir- 
nova, 1957; abbreviated OG and B respectively). 

In Part II, we state the rules for deriving maximal 
subgroups of category (b) directly from the crystal- 
lographic space groups. The subgroups considered are 
of index two and four. 

Part I 
I. 1. Definitions 

Two cases are to be considered under category (b): 
(bl) the subgroup H has an increased unit cell; this 
case mainly will be considered here [for completeness 
the other cases, (a) and (b2) are dealt with in the last 
remarks of § I. 4.], (b2) the space group G is centred 
while H has partly or wholly lost the centring, the case 
for which the unit cells remain the same. In this respect 
the wording 'zellengleich' for category (a) is not par- 
ticularly satisfactory. We would recommend the ter- 
minology 'isotranslation' and 'isoclass' subgroups for 
'zellengleich' and 'klassengleich' respectively. 

Let G be a group, H a subgroup of G, g an element 
of G, but not contained in H. If 

G = H + g H ,  (1. 1) 
H is a maximal subgroup of index two of G. 

(a) If G is a space group and g-- (a[r~), a space group 
element, where a is a rotation, r~ a translation, then 
H is a subgroup of category (a). 

(b) If G is a space group and g=(e] ta)  where e is 
the identity element and tG a (non-zero) lattice trans- 
lation, not contained in H, then H is a subgroup of 
category (b). 
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I. 2. Digression on magnetic groups 
A magnetic space group Gm is isomorphous with a 

space group G. We can always construct a magnetic 
space group from (1. 1) by the formula (Opechowski 
& Guccione, 1965): 

Gm=EH+ E' g H = H + g ' H .  (1.2) 

Here E and E '  are elements of the time-reversal 
group, g ' = E ' g  is an antisymmetry element. H con- 
tains all the symmetry elements, g ' H  all the antisym- 
metry elements of Gin. Thus G and Gm have a common 
maximal subgroup H. 

If g =  (cclz,), the translation lattices of G m and H and 
therefore the magnetic and crystallographic transla- 
tion lattices (and unit cells) will be identical. 

If g '  is an antitranslation, the translation lattices of 
H will be different from those of G. Thus our task is 
reduced to reading from the existing tabulations of Gm 
first the associated (isomorphous) space group G and 
second the maximal subgroup H. 

I. 3. Translation groups 

We consider first the simplest case where G coin- 
cides with its translation group T. Let T be the trans- 
lation group formed by all translations Rt 

Rt=lla1+12a2+13a3 (lj integer) (1.3) 

and select all those translations for which 13 is even, say 

13=2l . 
These translations form a group of translations T233 

in which the unit cell is a,, a2, 2a3. We can write 

T= Z2a 3 + (ela3) Z2aa . (1. 4) 

Magnetic translation groups. Consider the 'wavevector' 

k = [004z] = ½a~ ( 1 . 5 )  

where the asterisk means 'reciprocal lattice vector'. 
One finds for the character of Rz 

z(R~)=exp (2zcik. Rt) (1.6a) 
= exp ~il3 J" = + 1 for 13 = even 

[ = - 1  for l a = o d d .  (1.6b) 

Thus we have constructed a magnetic lattice Tin, 
i.e. we have partitioned the lattice of T into two parts, 
translations with z ( R 3 =  1 and 'antitranslations' with 

z(R 3 = -  1. Consequently we can write the group Tm 
isomorphous with T (1.4): 

Tin= Tza3 +(elaa)'T2a3 (1.4 ')  

where (ela3)' is an antitranslation. The present example 
expresses the well known fact that halving in reciprocal 
space (1.5) corresponds to doubling in direct space. 
Actually the author previously has shown that all 
magnetic translation lattices can be described by in- 
variant k vectors (Bertaut, 1975a), having components 
equal to 0, ½ and 1 only. We are here more particularly 
interested in those k vectors for which at least one 
component is ½. They are given in Table 1 for the 
magnetic translation lattices with the corresponding 
OG and B notation. 

OG notation: the first letter, a capital, is the symbol 
of the lattice type to which the 'chemical' cell al,a2,a3 
belongs. The subscript indicates the new periodicity 
of the increased unit cell. 

B notation: the first letter, a capital, is the symbol 
of the lattice type to which the multiple cell belongs. 
The subscript indicates the antitranslation. We retain 
from these notations that, suppressing the subscripts, 
the OG notation indicates the lattice type of unit cell 
al,a2,a 3 while the B notation contains the lattice type 
of the subgroup with the increased unit cell. More 
generally, consider the coset decomposition of the 
translation lattice T 

T =  To +(elt) To. (1.7) 

If t is a non-fractional translation, To is associated 
with the increased unit-cell dimension 2t (category bl). 
If T is a centred group and t a centring translation, 
To is associated with the same unit cell as T, but having 
lost the centring t (category b2). The same reasoning 
as above applies to these lattices, which for complete- 
ness are summarized in Table 2 with their OG and B 
notation and the corresponding k vectors. 

We now return to multiple cells. In this discussion 
we distinguish two cases. 

Case 1. The unit cell axa2a3 belongs to a P lattice 
k = [100]. This case has been already discussed above. 

The translation subgroup of lattice 2ax, a2, a3 is also of 
type P (B notation). The same is true for k=[0½0] 
and k = [00~]. 

Table 1. Magnetic translation lattices with multiple cells and wavevectors k 
OG is Opechowski-Guccione, B is Belov notation. 

Lattice Lattice 
System OG B Vector k System OG B Vector k 

Triclinic P2~ P~ 00½ Orthorhombic C2c Cc 00½ 
Monoclinic P2a Pa ½00 Cx Ic 10½ 

P2b Pb 0½0 Tetragonal P2~ Pc 00{ 
Pc ca P~o P~ Pc 
c~c cc oo½ P, L 

Orthorhombic Pza Pa ½00 Rhombohedral Ra Rt ~ -  
Pc Ca ½½0 Hexagonal and 
Pv F~ ~-~ trigonal P2c Pc 00½ 

Cubic Pv Fs 

A C 32A - 4* 
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Table 2. Centred translation lattices conserv&g the 
unit-cell parameters 

Lattice 
System OG B 

Monoclinic and 
orthorhombic Cp Pc 

Orthorhombic Fc Ca 
Orthorhombic, 

tetragonal 
and cubic I~, P, 

Vector k 

100 
001 

001 

k = [21-~20]. In the orthorhombic and monoclinic cases, 
relation (1.6a) shows that not only 2a~, 2a2, but also 
a~ + a2 are translations with positive character. Thus the 
new unit cell 2al, 2a2, aa is centred, C in the B notation. 

In the tetragonal case, one does not generally con- 
serve the increased C cell, but chooses the simpler 
tetragonal P cell with the translations 

A l = a i + a 2 ;  A 2 = a i - a 2 ;  A a = a 3  . ( 1 . 8 )  

k=[2x~2]. Here according to (1.6a), not only 2al, 
2a2 and 2as, but also al+a2,  az+a3 and aa+ai ,  are 
translations of positive character so that a F lattice in 
the B notation is obtained (in the orthorhombic and 
cubic systems). 

F lattices are not generally used in the tetragonal 
system so that by the transformation (1.9) one arrives 
at the unit cell 

A I = ai  + a2; A 2 = al  - a2; A s = 2a3 ( 1 . 9 )  

which is centred I in the B notation. Indeed the trans- 
lation ½A1 + ½A2 q- ½A3 = ai + a3 has positive character. 

Another special case is the rhombohedral system in 
which one does not use the F centring in the unit cell 
2a~, 2a2, 2a3 of volume 8a~a2a3, but the simpler rhom- 
bohedral cell of volume 2a~aza3 with lattice translations 

A: = a 2 q- a3; A 2 = a 3 -t- ai; A3 = ai + a2 , (1. 10) 

which is why the B symbol is still R. 
To summarize, maximal isoclass subgroups of index 

two of P lattices can be of type P, C and F, but n o t / ,  
except in the tetragonal case where F transforms to 1 
[cf. (1.9] and in the monoclinic case where C trans- 
forms to I and vice versa by the transformations A1 = 
a~+a3; A2=a2; A3=--a3  with a s for the C cell and 
Aj for the I cell ( j =  1,2, 3). Of course C centring can 
be made equivalent to A or B centring by a convenient 
change of axes. 

Case 2. The unit cell al, a2, a3 belongs to a centred lattice 
There are only two cases present in Table 1, both 

belonging to C. 
The vector k =  [003] gives rise to a doubling in the 

a3 direction so the unit cell conserves the C type (C2c 
in the OG and C in the B notation) in the orthorhombic 
and monoclinic systems. 

The second case is that of k=[10½]. It is seen from 
(1.6.a) that 2x~0 is an antitranslation, but that 2~1 in the 
chemical cell, say z-u~z in the cell al, a 2, 2aa is a transla- 

tion of positive character, so the new cell is I centred 
(cf. Table 1 for the orthorhombic case). 

To summarize, C lattices have isoclass subgroups of 
index two with the increased unit cell al,az,2a3 of lat- 
tices C and I only. 

F and I lattices cannot have subgroups of index two 
with increased unit cells. 

Remark. k-vectors which are not listed in Table 1 
are of two kinds. They are either forbidden or equiv- 
alent, by a change of axes, to those already listed. 

Thus k=[½00] is not listed for the tetragonal and 
cubic systems, because a unit cell 2a1,az, a3 cannot be 
of the same class (neither tetragonal, nor cubic). 

k=[½0½] is not listed in the monoclinic system; in 
the new equivalent axes (spanning the same unit-cell 
volume) A~ = a I , A2 = a2; A3 = al q- a3, the wavevector 
becomes kl = [½00] which is listed in Table 1. The same 
reduction procedure is valid in the triclinic system. For 
the same reasons k=[10½] is not of general use in the 
monoclinic system (in other words CI in the OG and 
Ic in the B notation are not listed) because here the 
anticentred C lattice can always be transformed into 
a centred C lattice by the transformation to the new 
equivalent axes A1 = al + 2a3, A2 = a2; A3 = 2a3 for which 
the wave vector becomes k~=[00½]. Also note that 
Ca = Cb in the B notation. 

I. 4. Space groups 
Here again we first recall matters of notation which 

are important for our purpose. 
In the OG notation symmetry elements are noted 

by their Hermann-Mauguin symbols, antisymmetry 
elements (excepting antitranslation) by primed sym- 
bols. The same is true in the B notation. Thus both 
notations are identical in all cases where chemical and 
magnetic translation lattices coincide, but differ as 
soon as an antitranslation is present. Here OG con- 
tinue to use unprimed and primed Hermann-Mauguin 
symbols in the chemical cell preceded by a capital letter 
which characterizes the lattice type of the chemical cell 
and a subscript which indicates the new periodicity 
while B uses exclusively unprimed Hermann-Mauguin 
symbols (no antisymmetry element present) preceded 
by the symbol of the translation lattice in the new unit 
cell and a subscript which describes the antitranslation. 

Thus we retain in the OG symbol the space group G 
(suppressing all primes) and the new periodicity (which 
is also apparent from the k vectors of Table 1) while 
the B symbol, suppressing the subscript of the anti- 
translation, gives us directly the maximal subgroup H 
for which we look and contains only symmetry ele- 
ments. In other words, in the magnetic space groups 
Gm [cf. relation (1.2)], the B notation is just Hg, where 
H is the maximal subgroup of G and g' is the anti- 
translation symbol. 

Finally, our problem is reduced to transforming the 
known OG symbols (with translation lattices listed in 
Table 1) to the corresponding B symbols. This is done 
in the following steps. 
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(1) Note the space group G to which the OG sym- 
bol belongs and the new unit cell from the subscript 
or from the k vector. 

(2) Read from Table 1 the translation lattice in the 
new unit cell (B symbol) and the antitranslation sub- 
script. 

(3) Conserve the unprimed Hermann-Mauguin sym- 
metry elements; multiply each primed element by the 
antitranslation. The result is an (unprimed) symmetry 
element which one substitutes for the primed one. 

(4) In the B symbol thus obtained suppress the sub- 
script to obtain the maximal subgroup H of G; even- 
tually transform the B symbol to the standard setting 
used in International Tables for  X-ray Crystallography 
(1952) and in the OG and B tables. 

Example 1. OG symbol P2bm'ma 

Step 1. The space group is Pmma, the increased unit 
cell is al, 2a2, a3; the k vector is [0½0]. 

Step 2. To Pzb corresponds Pb(B); b = (a2)' is an anti- 
translation. 

Step 3. The multiplication of the antisymmetry 
plane m~ by the antitranslation (a2)' gives rise to a 
glide plane bx in the new unit cell: 

m'x x (az)' = mx x az= bx . 

Step 4. The B symbol is Pbbma. Thus the space group 
G= Pmma (unit cell a~, a2, aa) has a maximal subgroup 
H =  Pbma (unit cell al, 2a2, a3). 

Remark.  The standard setting is not bma but bcm (see 
(International Tables, 1952, p. 548). Indeed by the cir- 
cular permutation x --+ y --* z --+ x, one has a~ --+ bx, 
my --~ mz, bx --~- ey, b -+ c so that P b b m a -  Pcbcm (wrong- 
ly given as Pbbem in OG). Table 3 summarizes the 
maximal subgroups H with increased unit cell of the 
orthorhombic P space group G = Pmma. The first and 
second columns contain the magnetic space groups Gm 
in the OG and corresponding B notation respectively. 
The third column indicates the increased cell dimen- 
sions. The last column repeats the B symbol in its 
standard notation when that of the second column is 
different. The maximal subgroup H of G is read from 
the second column, suppressing the subscript (or just 
interpreting it as being the cell dimension to be in- 
creased). 

Remark on tabulations. Opechowski & Guccione 
(1965) have tabulated the magnetic groups G,, in the 

OG and in the B standard notation. Their tables can 
be used for all the systems with the sole exception of 
the orthorhombic system where the B symbol derived 
from the OG symbol by the procedure described above 
differs sometimes from the standard notation. The 
author has also tabulated the maximal subgroups of 
the orthorhombic system in a way similar to Table 3.* 

Neubfiser & Wondratschek (1966) have derived dia- 
grams of space group-subgroup relations for the classes 
23, m3, 432 and 43m, the isoclass subgroups being of 
indices two and four. Also a tabulation of subgroups 
(Neubiiser & Wondratschek, 1970) was circulated 
among the members of the IUCr Commission on Inter- 
national Tables. This tabulation, derived from a com- 
puter program, comprised a great number of maximal 
subgroups of index two. However those space groups 
for which the maximal subgroup H has the same Her- 
mann-Mauguin symbol were omitted. 

Actually there are 1421 magnetic space groups from 
which one may derive 1191 maximal subgroups H of 
index two of the 230 space groups G. There are 674 
isotranslation subgroups [category (a) of the Introduc- 
tion] and 517 isoclass subgroups [category (b)] corre- 
sponding to the 517 magnetic groups with antitransla- 
tions and falling into two categories. There are 329 
subgroups H with increased unit cells [category (bl); 
translation lattices of Table 1] and 188 with the same 
unit cell, but with partial or total loss of centring 
[category (b2); translation lattices of Table 2]. The 
categories (bl) and (b2) correspond to magnetic space 
groups Gm with integer and fractional antitranslations 
respectively. 

Among the 329 maximal subgroups H with in- 
creased unit cells there is an important fraction of 99 
subgroups, tabulated in Table 4 where H and G have 
the same Hermann-Mauguin symbol. Clearly H ~ G  
where ~ means isomorphous with. These 99 subgroups 
H fall into two sets" 54 are derived from (44) symmor- 
phous space groups and 45 belong to (40) non-sym- 
morphous space groups G. The reasons for H ~  G will 
appear later (see § II. 1.5). 

* These tables are available as photocopies which may be 
purchased from the author or obtained from the deposit with 
the British Library Lending Division, Supplementary Publica- 
tion No. 31933 (8 pp.), through The Executive Secretary, In- 
ternational Union of Crystallography, 13 White Friars, 
Chester CH1 1NZ, England. 

Table 3. Connexion between magnetic space groups and maximal  subgroups H o f  a space group G. 
Example" G= Pmma 

O G  is Opechowski-Guccione, B is Belov notation of magnetic groups. The subgroups H are read from the second column, 
suppressing the subscript and using the increased cell dimension(s) of the third column. 

Increased B standard Increased B standard 
OG B dimension notation OG B dimension notation 

P2bmrna Pamma 2b P2orn" ma" Pbbmn 2b Pamna 
P2crnrna Pcmma 2c P2crn" ma Pccma 2c Pabam 
P amrna Abmma 2b, 2c Camcm P2cmm" a Pcmca 2c P~bcm 
P2bm" ma Pamma 2b Pcbcm P2cm" m" a P~cca 2c 
P2bmma" P~rnmn 2b P~mmn Pam' ma Accma 2b, 2c C~mca 
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Remark on the isoclass subgroups of category (b2). 
The procedure of four steps outlined above applies to 
any magnetic space group Gm with antitranslations. 
As an example consider Ccca where the following four 
anticentred groups Gm exist: Cpcca, Cl, C'ca, Cpcc'a, and 
Cpc'c'a in the OG notation. The transformation to B 
symbols yields (see also Bertaut, 1975a) Pcca, Pnca, 
Pcna and Pnna. 

Remark on equivalencies. The direct procedure out- 
lined for maximal P subgroups of C and I groups (Ber- 
taut, 1976) obtains these plus four more groups, Pncb, 
Pcnb, Pccb and Pnnb, but they are equivalent to the 
preceding ones. The reader must keep in mind indeed 
that only the non-equivalent magnetic groups are 
tabulated. Equivalency relations in magnetic space 
groups have been given (Bertaut, 1975b). Their tabula- 
tion is equivalent to and even more informative than 
the tabulation of magnetic space groups. 

Remark on isotranslational subgroups [category (a)]. 
Although relation (1. 1) is generally used to construct 
maximal isotranslation subgroups, it is possible to re- 
construct them from magnetic space groups without 
antitranslations. 

Example 1. Pc'ca. The product cyaz is equivalent to 
21x. Thus Pc'ca= H+ c',H with H= P2~ca. 

Example 2. Pc'c'a. The product c'x. c~ is equivalent 
to 2~. Thus Pc'c'a= H+ c'~H with H=P2Ja .  

As a classroom example, the reader may check again 
that equivalency relations between magnetic groups 
G~ (Bertaut, 1975b) correspond to equivalent sub- 
groups H. 

Part II. Direct approach 

Although a detour through the (already tabulated) 
magnetic space groups is comfortable, one might look 
for a more direct approach. We shall state here the 
cases which are to be excluded, i.e. we state the rules 
under which a space group G has no maximal sub- 
group H. 

II. 1. Maximal subgroups of index two 
We write again relation (1. 1) in the form appro- 

priate for our purpose 

G=H+(e[t~;)n (2. 1) 

where t~ is a lattice translation of G, not contained in 
H. H only contains the even powers of (elt~). 

The closure property, H is a group, implies that any 
combination of elements of H must be again in H, 
and cannot be in (eltG)H. 

Rule 1. An element (fllza) of G cannot be in H if a 
power (fllro)" is equal to the translation (eltG) or to an 
odd power of (eltG) or, expressed otherwise, if G con- 
tains elements (fllra) whose power is equal to (eltG) 
no maximal subgroup H can be found containing 
(fll~B) and satisfying (2. 1). 

Rule 2. If there are two elements of G, say (alTo) and 
(fliTs) whose combination by group operations results 

in a lattice translation (eltG), these two elements can- 
not be simultaneously in H. 

II. 1. 1. Screw axes 
One has 

(nm),=mt. (2. 2) 

Axes nm with m odd, present in G, exclude the decom- 
position (2. 1), i.e. do not allow doubling of the unit 
cell in the direction t of the rotation axis. Thus, axes 
21,31,41,43,61,63,65, cannot be present in G and H for 
this case. (The case of 31 will be considered again be- 
low). 

Axes n,, with m even, present in G, are allowed; 
one must only keep in mind that an axis nm in G be- 
comes n,,/, in H. Thus 32 in G becomes 31 in H with 
the same handedness. 

The case of 31 needs special care. As already stated, 
31 cannot be simultaneously in H and in G. Consider 
however the even powers of 31 in G. The first even 
power which gives rise to a rotation of 120 °=(2n)/3 
is (31) 4. The translational component is (4/3)tc in G 
and (2/3)tN in H with tH = 2t~. Thus the action of (31) 4 
in G is equivalent to that of (32) 1 in H. It is then an 
easy matter to see that the powers (31) p in G with p 
even are equivalent to the action of powers of 32 in 
H, whilst powers (31) p in G with p odd are equivalent 
to the action of powers of 32 in H plus a translation to. 

Thus the decomposition (2. 1) is possible, 31 in G 
becoming 32 in H. 

II. 1.2. Glide planes 
a, b and c planes in G do not allow doubling of the 

unit cell in the x, y and z directions respectively. 
An n plane perpendicular to Ox is compatible with 

• doubling the unit cell in the Oy and Oz directions 
simultaneously, but incompatible with doubling in 
only one of these directions. 

Note that under these circumstances, an n plane in 
G becomes a d plane in H. 

Remark. d planes only exist in F and I lattices [they 
are such that d 2 =  (e[ta) with ta a fractional translation] 
which do not admit maximal subgroups H of order two. 

II. 1.3. Applications of rule 1 
Example 1. Pmma. The full symbol is P21/m 2/m 2/a. 

The presence of the glide plane a as well as of the 
helical axis 2~ excludes doubling of the unit cell along 
Ox. Doubling along Oy and/or Oz is allowed. We only 
work out the maximal subgroups for the unit cell a,, 
2a2, az. The plane mx either remains mx or becomes b~,; 
the plane my remains my; the plane az either remains 
az or becomes nz. Thus there are four maximal sub- 
groups possible with the unit cell al,2a2,a3: Pmma, 
Pbma, Pmmn, Pbmn. The reader may work out the 
maximal subgroups of Pmma and check the results of 
Table 3. 

Example 2. P4/nnc and Pnma= P21/n 21/m 21/a. The 
binary elements exclude any doubling in any direction. 
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II. 1.4. Applications of  rule 2 
Rule 2 will be needed only in a non-symmorphous 

space group, having a centre of symmetry which we 
suppose is located at the origin. With the elements 
(TI000) and (~[r~) one constructs the products (o~. TIx,) 
and (T. ~1- ~,) and the squares [~21(~ + e)~,], (~. T[z,) 2 
=[~2l(e-~)~,] and (T.~l -~ , )2=[cdl(a-e)~, ]  which 
have the same rotational part. Consequently, accord- 
ing to rule 2 the differences of their translational parts, 
i.e. 2z, and 2~ , ,  should not be equal to tG, but should 
remain translations of H, to be allowed. In the k-for- 
malism this means that 

exp (2z~ik. 2 ~ ) =  + 1 and exp (2nik. 2ax,)= + 1 . 

Example 1" P42/n. Here z,=0~-~; c~=4,; 2z,=011 
and 2 ~ r = -  101. Only k=[~-5],  i.e. increase in the 
three dimensions simultaneously is allowed. In the 
unit cell 2a~,2a2,2a3, 42 becomes 4~ and n=(mzl~-~O) 
becomes (m,1¼¼0) which according to the change of 
axes (1.9) transforms to (m,1½00), i.e. to an a plane. 
Thus the (only) isoclass maximal subgroup is I4~/a. 

Example 2" P4/n. Here z~ =½00; 2r~ = 100 and 2c~r~ = 
010. Only doubling along the c axis is allowed. The max- 
imal subgroup in the new unit cell a~, a2, 2aa is still P4/n. 

II. 1.5. The case H ~  G 
Symmorphous groups. Rules 1 and 2 do not apply. 

One must however exclude F and I lattices which do 
not admit isoclass subgroups of index two in a unit 
cell increase and cubic P lattices which would give rise 
to F lattices. 

Non-symmorphous groups. Here it is required that 
the directions in which the unit cell is increased are 
orthogonal to the fractional translations of the screw 
axes and/or glide planes present (Table 4). 

II. 2. Maximal isoclass subgroups of  index four 
Let G be a group and H a maximal subgroup of G 

of index 4. 
G = H+g~H+g2H+gaH (2. 3) 

where gj ( j =  1,2, 3) is in G, but not in H. 

II. 2. 1. Same unit cell 
A simple example is provided by cubic space groups 

G with F lattices and subgroups H with P lattices of 
the same unit cell (category b2) with gl = ~ 0 ,  g2 = 50~, 
g 3 = 0 ~ .  For instance in Fm3m, the m planes perpen- 
dicular to the x,y ,z  axes are associated with the n 
planes through the fractional translations gj. Thus 
the above decomposition with G=Fm3m is valid for 
H=Pm3m, Pn3m (but not for Pm3n and Pn3n). For 
G=Fm3c one has H =  Pm3n and Pn3n. F lattices with 
d planes do not admit an isoclass decomposition fol- 
lowing (2. 3). One easily completes the list of maximal 
isoclass subgroups of index four with G=F23 ,  H =  
P23 and P2~3; G=Fm-J, H=Pm'3 and Pa3; G= 
F432, H = P 4 3 2  and P4232; G=F43m,  H=P~3m;  
G = F'43c, H= P-43n. 

In orthorhombic groups G with F lattices the decom- 
position (2. 3) is possible (except when d planes are 
present), but H is no longer a maximal subgroup. In- 
deed from (2. 4) follows (2. 5) where K = H + g ~ H  is 
a maximal subgroup (C lattice) 

g2=g3gz (2. 4) 

G = ( H + g , H ) + g s ( H + g ~ H ) = K + g s K .  (2. 5) 

II. 2. 2. Increased unit cell 
P lattices have no maximal I subgroups of index two 

(excepting the tetragonal and monoclinic cases men- 
tioned in § I. 3). Thus we suspect that a P lattice might 
have an I lattice as maximal subgroup of order four. 
One has indeed 

P=I+(ela~)I+(ela2)I+(ela3)I. (2. 6) 

Here P is the translation lattice of unit cell aa, az, a3 
and I the translation lattice of unit cell 2a~,2az,2a3 
which contains eight points as follows, referred to the 
P lattice, 

(000; 111); (100; 011); (010; 101); (001; 110). 
They become, referred to the I lattice, 

(000; ~I-~); (500; 0 ~ ) ;  (0½0; 505); (005; ~ 0 )  

and represent exactly the decomposition (2. 6) above. 

Table 4. Maximal subgroups H of  G with H ~  G 
The subscripts a, b, c indicate a unit-cell doubling in the a,b,e directions respectively; s stands for doubling in any direction 

and subscript C stands for the increased unit cell al/2, al/2, c. 
Symmorphous groups 

Triclinic P~I ; Ps-f 
Monoclinic 
(b unique axis) Pa2; P~2; Cc2; Pom; Pbm; Ccm; Po2/m; Pb2/m; Cc2/m 
Orthorhombic Ps222; Cc222; Pcmm2; Pamm2; Ccmm2; Aamm2; P~mmm; Ccmmm 
Tetragonal P~4; Pc4; p2[; PcT~; Pe4/m; Pc4/m; P~422; Pc422; P~4mm; Pc4mm; P~7~2m; PcT~m2; P~4/mmm; 

Pc4/mmm 
Trigonal Pc3; R,3; P~; Re]~; P,312; Pc321 ; R,32; P,3ml; Pc31m; R~3m; Pc3lm; P,~ml; R,~m 
Hexagonal P,6; P,~; Pc6/m; Pc622; P,6mm; P,-6m2; P,~2m; Pc6/mmm 

Non-symmorphous groups 
Monoclinic 
(b unique axis) Pa2a; PoC; Pbc; P~21/m; P~2/c; P~2/c; Pa21/c 
Orthorhombic P,222t; P~2~212; P~mc21; Pornc2t; P~cc2; Poma2; P~ma2; Poca21; Panc2; P~mn21; P~ba2; A,bm2; Poccm; 

Pcban; Pbrnma; Pcrnrna; Pbmna; Pbcca; Pcbam; Pabcm; P~mmn; Ccrnma 
Tetragonal Pc4~; Pc42; Pc43; Pc42/m; Pc4/n; Pc4212; Pc4122; Pc4z22; Pc4322; Pc4bm; Pc4cc; Pcg21m; P~7(b2; 

Pc4/mcc; P¢4/nbm; P¢4/mbm 



982 ON M A X I M A L  S U B G R O U P S  WITH I N C R E A S E D  UNIT  CELLS 

Consider (2. 3) where G is a space group with a P 
lattice, H a subgroup with an I lattice, gj being the 
translation (e[aj) and again ask the question of the 
symmetry elements which cannot be in G and in H 
simultaneously. We first discuss cubic spa~ze groups. 
Glide planes a,b,c must be excluded. Indeed a can- 
not be in H because (a)2= (e[a0 would be in the second 
coset of (2.3). Glide planes n, orthogonal to the axes, 

2 must be excluded. An example is n:,=(e[a2)+(e[a3) 
which are in the third and fourth cosets. However, 
diagonal n planes which occur in cubic lattices are 
allowed. They are such that 

n 2 = (elat + a2 + a3) = 1, 1,1 in the primitive unit cell 

and 
1 1 =~-,½, 2 in the unit cell 2al, 2a2, 2a3. (2. 7) 

Thus the n plane in the P cell becomes a d plane in 
the I cell. Axes 21,41,43 are excluded, while 42 is al- 
lowed. Maximal subgroups of index four are cubic. 
They are summarized in Table 5(a). 

Table 5. Subgroups of index four (I lattices) 

(a) Cubic space groups 
The subgroups H of index four are maximal. 

G(ala2a3) H(2al, 2a2, 2a3) G H 
P23 123 P4232 14132 

I213 PT~3m I7~3m 
Pm3 Im'3 PT(3n 17~3d 

Ia3 Pm~m Im3m 
P432 I432 Pm]n Ia3d 

(b) Or thorhombic  space groups 
The subgroups H of index four  are not  maximal;  they are 
maximal subgroups  of index two of the respective C groups, 
C222, Cram2 and Cmmrn. 

G(ala2az) H(2al,  2a2, 2a3) G H 
P222 1222 Pmmm lmmm 

1212121 Imma 
Pmm2 lmm2 Ibam 

Ima2 = lbm2 Ibca 
Iba2 

Of course, in the orthorhombic system the deriva- 
tion of all possible subgroups H of index four and lat- 
tice I from a space group G of lattice P follows the 
same lines, i.e. one must exclude glide planes a,b,e,n 
in G. However these subgroups H, listed in Table 5(b) 
are no longer maximal because one has the relations 
(2. 8) (of. § I. 3, case 2) and (2. 9): 

C=I+(elaa)I (2. 8) 
P= C+ (e[al)C. (2. 9) 

Here the unit cells are aa,a2,a3 in P; 2al,2a2,a3 in C; 
2at, 2a2, 2a3 in L 

Conclusions 

The author would like to emphasize two main con- 
clusions. The first one is about the potential importance 

of group-subgroup relations (see also Neubfiser & 
Wondratschek, 1966). B/irnighausen (1975) has recently 
constructed a 'family tree' of such group-subgroup 
relations in the perovskite family which provides an 
interesting synoptic ordering principle, relating the 
high-symmetry to the low-symmetry compound by a 
sequence of maximal isotranslational and/or isoclass 
subgroups. Further investigations have to show if such 
a family tree is useful for distinguishing and predicting 
the nature of transitions (first or second order). An- 
other example is provided by NbO2 where the follow- 
ing stepwise sequence through maximal subgroups 
P42/mnm (a, a, c) --+ P42/m (a,a, e) --+ P42/m (al/2,a]/2, 
c)--+ P42/n (2a,2a, c) ~ I41/a (2a]/2,2a~/2,2c) leads 
from the high-temperature (rutile) to the low-tempera- 
ture form with a 16-fold increase of the unit cell 
(Marinder, 1963). The question is whether the step- 
wise sequence corresponds to a stepwise reaction or 
not. In the present example there are clear indications 
(Shapiro, Axe, Shirane & Raccah, 1974) that the tran- 
sition is in one step from P42/mnm to I4~/a, i.e. to a 
subgroup of index 16. 

The second point is that no field of symmetry con- 
siderations should leave the ¢rystallographer indifferent 
even if at first sight it only seems to represent an in- 
terest for a limited number of people. This is clearly 
exemplified by the connexion shown to exist (Part 1) 
between magnetic space groups with integer antitrans- 
lations and maximal subgroups of index two with in- 
creased unit cell. 

Comments 

In a very positive referee's report the attention of the 
author was drawn to the paper Klassengleichen Super- 
group-Subgroup Relations Between the Space Groups 
(Boyle & Lawrenson, 1972) in which the volume ratios 
of the unit cells of'Klassengleiche' (isoclass) subgroups 
Hand  groups G aretabulated, but without distinguishing 
maximal and non-maximal subgroups. Such tables are 
surely useful for the physicist. Still, this paper is able 
to clear ambiguities and also provides a useful means 
for checking the validity of their tabulation for max- 
imal subgroups. 

For instance we read either from our direct ap- 
proach (Part II) or from the Opechowski-Guccione 
tables that P4/mmm-D~s, (unit cell a,a,c) has the fol- 
lowing maximal isoclass subgroups: 

P4/mmm-D~h; P4/nbm-D]n; P4/mbm-D~r,; 
P4/nmm-D]~ with the unit cell a 1/2, a 1,/2, c; 
B notation Pc. 

P4/mmm-D~h; P4/mcc-D2~; P42/mmc-D9~; 
P42/mcm-D] °; P42/nbc-D]~] with the unit cell a, a, 2c; 
B notation Pt. 

14/mmm-D~; 14/mem-D~ 8 with the unit cell all2, 
al/2,2c; B notation It. 

The Boyle-Lawrenson tables cannot distinguish dif- 
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ferent cases of doubling the unit-cell volume, for in- 
stance doubling in the c direction or in the c plane as 
exemplified above. 

Also, in their Table 5 a minimum volume ratio of 
eight is assigned to the subgroups D]h, D]~,, D9h, D] ° 
and of four to the subgroup D~ of the space group 
D]h whilst according to the example above this volume 
ratio is two. (No other errors have been found how- 
ever.) 

May hearty thanks are due to Dr Forrest L. Carter, 
guest scientist from the Naval Research Laboratory, 
Washington, D. C., for improvements in style and 
presentation. 
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A complete examination of the shape of the neutron-scattering cross-section curves at very small 
scattering vectors, of the order of 0.05 ~ 0"1 nm-1, has been made for homogeneously oriented nematic 
liquid crystals. It is shown that the shape of the scattering curves at small angles is mainly determined 
by the kind of dislocation configuration exhibited by homogeneously oriented nematic liquid crystals. 
This study will furnish a partial guide to the construction of scattering relations for any kind of possible 
dislocation configuration in homogeneously oriented nematic liquid crystals, e.g. for stationary straight 
edge dislocations, moving edge dislocations, oscillating edge dislocations, curved dislocations and 
dislocation networks. 

1. Small-angle scattering of neutrons and X-rays by 
dislocations in homogeneously oriented nematic liquid 

crystals 

In a previous paper (Olivei, 1973) we have already dis- 
cussed the usefulness of using cold-neutron scattering 
for probing the molecular structure of homogeneously 
oriented nematic liquid crystals in the absence of any 
external magnetic or electric fields. In that paper, how- 
ever, we did not examine the cold-neutron scattering 
at very small values of the scattering vector (of the 
order of 0.05~0-1 nm-1). In fact, such a study should 
yield very interesting results about the existence and 
the structure &dislocations in homogeneously oriented 
nematic liquid-crystal layers. 

The existence of lines or regions of discontinuity in 
the ordered structure of homogeneously oriented ne- 
matic liquid-crystal layers makes possible the setting 
up of dislocations of various kinds. 

The use of cold-neutron small-angle scattering for 
studying dislocations in homogeneously oriented ne- 
matic liquid-crystal structures has advantages as com- 
pared to X-ray scattering. In principle, small-angle 
scattering of X-rays and neutrons is induced by long- 
range fluctuations of density or refractive index in a 
sample. Such fluctuations are produced by many types 
of structural disorder, e.g. dislocations, defect clusters, 
critical phenomena. 

The first advantage of neutrons as compared to 
X-rays concerns the change of the wavelength. In most 


